You are here

Sarah-Maria Fendt


12th and 13th September 2017. Leuven
Confirmed Speakers:
Nika Danial (Dana Farber-Harvard Cancer Center, USA)
Christian Frezza (University of Cambridge, UK)
Paolo Sassone-Corsi (University of California, USA)

Karen Vousden (Cancer Research UK, UK)

More info on this page

Laboratory of Cellular Metabolism and Metabolic Regulation

Our vision is to reach an understanding of cellular metabolism and its regulation that enables us to normalize aberrant disease metabolism by exploiting its naturally embedded control mechanisms. This level of understanding will allow us to design drugs that only target the diseased cells and will yield no side effects on healthy cells. To reach our long-term vision, we reveal functional and mechanistic understanding of cellular metabolism by focusing on metabolic auto-regulation, on the link between cellular metabolism and signaling, and on the regulatory impact of the nutrient environment on cellular metabolism. To gain crucial insights into these research areas we exploit our metabolism expertise, which includes the generation of intracellular metabolism data using steady state 13C tracer infusions to mice, 13C metabolic flux analysis and metabolomics.

Follow us on Twitter and ResearchGate

Does the microenvironment shape the metabolism of cancer cells during metastasis formation?

We investigated the role of the microenvironment in shaping cancer metabolism during breast cancer metastasis to the lungs. We discovered that breast cancer-derived lung metastases activate PC-dependent anaplerosis as a function of the nutrient availability within the lung microenvironment. While primary breast cancers often rely on glutamine anaplerosis, the resulting and genetically similar lung metastases activate PC-dependent anaplerosis in response to the lung microenvironment. Thus, we discovered that pyruvate carboxylase-dependent anaplerosis distinguishes lung metastases from their corresponding primary breast cancers. This shows that primary cancer and their resulting metastases can have different metabolic vulnerabilities and consequently should be targeted with different drugs. … Christen et al., 2016, Cell Reports

How can the loss of one and the same enzyme result in two different diseases?

Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function, and whether this contributes to the peculiarity of tumor development versus neurodegeneration. We found that sole loss of SDH activity was not sufficient to recapitulate the metabolic phenotype of SDH mutant tumors, because it failed to decrease mitochondrial respiration and to activate reductive glutamine metabolism. These metabolic phenotypes were only induced upon the additional loss of complex I activity. Thus, we show that complex I function defines the metabolic differences between SDH mutation associated tumors and neurodegenerative diseases, which could open novel therapeutic options against both diseases. Lorendeau et al., 2016, Metabolic Engineering



Follow us on twitter






Karen Vousden, Paolo Sassone-Corsi, Christian Frezza, Nika Danial
12/09/2017 - 09:00